If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+6n+5=2
We move all terms to the left:
n^2+6n+5-(2)=0
We add all the numbers together, and all the variables
n^2+6n+3=0
a = 1; b = 6; c = +3;
Δ = b2-4ac
Δ = 62-4·1·3
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{6}}{2*1}=\frac{-6-2\sqrt{6}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{6}}{2*1}=\frac{-6+2\sqrt{6}}{2} $
| 0.88x=x-30 | | 5p(2)=315 | | 2(5+2x)=5(x-6) | | 2(x+6)=2(4x-3) | | 2(x+6)=2(4x-6 | | 4x+5x-55=0 | | 1.15=3^x | | 4(2x-1)=7(2-x) | | 7m-2=5m+20 | | X^2+2x=5/4 | | 3x+2/5x+7=x+1/3x-1 | | 3*(2x-1)=2+13 | | (2x+1)+(x+3)=5x+4 | | 10m-24=46# | | x-3x=3x+6 | | 11x+3=8x-15 | | 8*x=0.07 | | 2(4x-3)^0.5=4x | | (t-3/2)+(t+3/4)=(8-t/3)+2 | | n^2+6n+11=0 | | 12-4/9(x+15)=4 | | 0.25x-2=1/3x-4 | | 5=k/3+4 | | 4x²-21x+20=0 | | 2(x-2)=3x-11 | | 7x+107=10x | | 2y+8=1y+5= | | 5x+26=3x+34 | | 7=-5x+12 | | X-2-(1/4)(x-1/3)=1/6(x-1)+1/12 | | X/2-1/4(x-1/3)=1/6(x-1)+1/12 | | 2(h-1)/6-5=-3 |